28988 авторов и 62 редактора ответили на 85259 вопросов,
разместив 135226 ссылок на 43432 сайта, присоединяйтесь!

Что такое дифракция света?

РедактироватьВ избранноеПечать

Дифракция (лат. diffractus – буквально разломанный, переломанный) – явление, которое можно рассматривать как отклонение от законов геометрической оптики при распространении волн.

 

Дифракционные явления были хорошо известны еще во времена Ньютона, но объяснить их на основе корпускулярной теории света оказалось невозможным. Первое качественное объяснение явления дифракции на основе волновых представлений было дано английским ученым Т. Юнгом. Независимо от него французский ученый О. Френель развил количественную теорию дифракционных явлений (1818 г.). В основу теории Френель положил принцип Гюйгенса, дополнив его идеей об интерференции вторичных волн. Принцип Гюйгенса в его первоначальном виде позволял находить только положения волновых фронтов в последующие моменты времени, т. е. определять направление распространения волны. По существу, это был принцип геометрической оптики. Гипотезу Гюйгенса об огибающей вторичных волн Френель заменил физически ясным положением, согласно которому вторичные волны, приходя в точку наблюдения, интерферируют друг с другом. Принцип Гюйгенса–Френеля также представлял собой определенную гипотезу, но последующий опыт подтвердил ее справедливость. В ряде практически важных случаев решение дифракционных задач на основе этого принципа дает достаточно хороший результат.

 

 Дифракция волн наблюдается независимо от их природы и может проявляться:
  • в преобразовании пространственной структуры волн. В одних случаях такое преобразование можно рассматривать как «огибание» волнами препятствий, в других случаях – как расширение угла распространения волновых пучков или их отклонение в определенном направлении;
  • в разложении волн по их частотному спектру;
  • в преобразовании поляризации волн;
  • в изменении фазовой структуры волн.

Дифракционные эффекты зависят от соотношения между длиной волны и характерным размером неоднородностей среды либо неоднородностей структуры самой волны. Наиболее сильно они проявляются при размерах неоднородностей сравнимых с длиной волны. При размерах неоднородностей существенно превышающих длину волны (на 3–4 порядка и более), явлением дифракции, как правило, можно пренебречь. В последнем случае распространение волн с высокой степенью точности описывается законами геометрической оптики. С другой стороны, если размер неоднородностей среды много меньше длины волны, то в таком случае вместо дифракции часто говорят о явлении рассеяния волн.

 

Наиболее хорошо изучена дифракция электромагнитных (в частности, оптических) и акустических волн, а также гравитационно–капиллярных волн (волны на поверхности жидкости).

 

Тонкости в толковании термина «дифракция» . В явлении дифракции важную роль играют исходные размеры области волнового поля и исходная структура волнового поля, которая подвержена существенной трансформации в случае, если элементы структуры волнового поля сравнимы с длиной волны или меньше её. Например, ограниченный в пространстве волновой пучок имеет свойство «расходиться» («расплываться») в пространстве по мере распространения даже в однородной среде. Данное явление, не описывается законами геометрической оптики и относится к дифракционным явлениям (дифракционная расходимость, дифракционное расплывание волнового пучка). Исходное ограничение волнового поля в пространстве и его определенная структура могут возникнуть не только за счет присутствия поглощающих или отражающих элементов, но и, например, при порождении (генерации, излучении) данного волнового поля.

 

Изначально явление дифракции трактовалось как огибание волной препятствия, то есть проникновение волны в область геометрической тени. Следует заметить, что в средах, в которых скорость волны плавно (по сравнению с длиной волны) меняется от точки к точке, распространение волнового пучка является криволинейным (см. градиентная оптика, градиентные волноводы, мираж). При этом волна также может огибать препятствие. Однако такое криволинейное распространение волны может быть описано с помощью уравнений геометрической оптики, и это явление не относится к дифракции. Отступление от прямолинейности распространения света наблюдается также в сильных полях тяготения. Экспериментально подтверждено, что свет, проходящий вблизи массивного объекта, например, вблизи звезды, отклоняется в ее поле тяготения в сторону звезды. Таким образом, и в данном случае можно говорить об «огибании» световой волной препятствия. Однако, это явление также не относится к дифракции. Вместе с тем, во многих случаях дифракция может быть и не связана с огибанием препятствия. Такова, например, дифракция на непоглощающих (прозрачных) так называемых фазовых структурах.

 

С точки зрения современной науки определение дифракции как огибания светом препятствия признается недостаточным (слишком узким) и не вполне адекватным.

 

Поскольку, с одной стороны, явление дифракции света оказалось невозможным объяснить с точки зрения лучевой модели, то есть с точки зрения геометрической оптики, а с другой стороны, дифракция получила исчерпывающее объяснение в рамках волновой теории, то часто под дифракцией понимают проявление любого отступления от законов геометрической оптики. При этом следует заметить, что некоторые волновые явления не описываются законами геометрической оптики и, в тоже время, не относятся к дифракции. К таким типично волновым явлениям относится, например, вращение плоскости поляризации световой волны в оптически активной среде, которое дифракцией не является. Вместе с тем, единственным результатом так называемой коллинеарной дифракции с преобразованием оптических мод может быть именно поворот плоскости поляризации, в то время как дифрагированный волновой пучок сохраняет исходное направление распространения. Такой тип дифракции может быть реализован, например, как дифракция света на ультразвуке в двулучепреломляющих кристаллах, при которой волновые векторы оптической и акустической волн параллельны друг другу. Еще один пример: с точки зрения геометрической оптики невозможно объяснить явления, имеющие место в так называемых связанных волноводах, хотя эти явления также не относят к дифракции (волновые явления, связанные с «вытекающими» полями). Общим свойством всех эффектов дифракции является именно определенная зависимость данного явления от соотношения между длиной волны и размером неоднородностей среды. Поэтому дифракция представляет собой универсальное волновое явление и характеризуется одними и теми же законами в случае волн разной природы.

 

Дифракцией света называется явление отклонения света от прямолинейного направления распространения при прохождении вблизи препятствий. Как показывает опыт, свет при определенных условиях может заходить в область геометрической тени. Если на пути параллельного светового пучка расположено круглое препятствие (круглый диск, шарик или круглое отверстие в непрозрачном экране), то на экране, расположенном на достаточно большом расстоянии от препятствия, появляется дифракционная картина – система чередующихся светлых и темных колец. Если препятствие имеет линейный характер (щель, нить, край экрана), то на экране возникает система параллельных дифракционных полос.

 

Академик.ру – Дифракция.

Википедия – Дифракция волн.

College.ru – Дифракция света.

Последнее редактирование ответа: 19.02.2009

  • Оставить отзыв

    Оставить отзыв

РедактироватьВ избранноеПечать

«Что такое дифракция света»

В других поисковых системах:

GoogleЯndexRamblerВикипедия

В соответствии с пользовательским соглашением администрация не несет ответственности за содержание материалов, которые размещают пользователи. Для урегулирования спорных вопросов и претензий Вы можете связаться с администрацией сайта genon.ru. Размещенные на сайте материалы могут содержать информацию, предназначенную для пользователей старше 18 лет, согласно Федерального закона №436-ФЗ от 29.12.2010 года "О защите детей от информации, причиняющей вред их здоровью и развитию". Обращение к пользователям 18+.